Dinosaurs and Barbarians

Home » Posts tagged 'maniraptora'

Tag Archives: maniraptora

Evidence of Therizinosaurs in North America during the Late Cretaceous Period

Introduction

For many years, paleontologists have known about the presence of therizinosaurs (formerly classified as segnosaurs) in Asia, especially within what’s now Mongolia and China. However, Asia and North America were linked during a considerable portion of the Cretaceous Period, and this resulted in an interchange of faunas between the two continents, notably ceratopsians, pachycephalosaurs, tyrannosaurs, and maniraptorans. Could therizinosaurs, which had hitherto been exclusively Asian, have lived in North America as well?

A pair of Tarbosaurus attacking a herd of Therizinosaurus somewhere in Mongolia, approximately 80 million years ago. © Gregory S. Paul (1988). Image used with permission.

 

During the early 2000s, that question was answered with a definitive “yes”. Two genera of therizinosaurs have been described from North America, named Falcarius and Nothronychus. Falcarius represents possibly the earliest stage in therizinosaur evolution, dated to the early Cretaceous Period, while Nothronychus is much larger and more advanced and is dated to the middle Cretaceous. The presence of these two creatures clearly shows that therizinosaurs existed in North America, but so far they have only been found in rocks dated to the early and middle parts of the Cretaceous Period. One wonders if therizinosaurs managed to stay in North America right up until the end of the Mesozoic, 66 million years ago. Would they have kept evolving, becoming larger and more advanced? Would they have lived alongside Triceratops and Tyrannosaurus? (1)

It just so happens that there are a few pieces of evidence here and there which suggest that therizinosaurs did survive past the middle Cretaceous within North America, and that they kept living in North America up to the end of the Cretaceous Period.

 

The Evidence

The idea that there were therizinosaurs in late Cretaceous North America was first proposed by the German paleontologist Hans Sues in 1978. Specifically, he was writing about a particular specimen that had been uncovered in the Dinosaur Park Formation, located in Alberta, Canada, in rocks dated to the Campanian Stage of the Cretaceous Period. The specimen in question was a single “frontal” bone, which forms part of the skull. Today, this specimen is in the collections of the Carnegie Museum of Natural History, categorized as “CMN 12355” (NOT 12349 as you’ll sometimes see in internet searches). In his paper, Sues thought that this frontal bone belonged to a “raptor” dinosaur, and listed it as “gen. et sp. indet.”, which is an abbreviated Latin way of saying “genus and species undetermined” (2).

“CMN 12355”: A frontal bone which may belong to a therizinosaur. Left top: ventral view. Right top: dorsal view. Left bottom: lateral view. Right bottom: medial view. © Tracy Ford. Image from Paleofile.com. Used with permission. http://www.paleofile.com/Dinosaurs/Theropods/Segnosaurincertae.asp

 

Saying that this bone belonged to a raptor is understandable, since the dromaeosaurs and the therizinosaurs are related to each other. Both groups are located in a clade called the “maniraptorans”, which includes the ornithomimids, the oviraptorosaurs, the therizinosaurs, and famously, the dromaeosaurs and troodontids – the so-called “raptors” with their famous killing claws.

The second piece of evidence came in the early to mid 1980s. A single bone called an “astragalus”, which forms part of the ankle, was found in the Hell Creek Formation in rocks dated to the very end of the Cretaceous Period. In 1984, the Canadian paleontologist Dale Russell listed this single peculiar find in a long list of specimens uncovered in the Hell Creek Formation during the middle 1980s. However, this particular specimen has never been analyzed or described in a publication exclusively devoted to this bone. It is simply listed as “therizinosaurid indet.”. In 1992, Kenneth Carpenter looked at this bone, and concluded that it actually belonged to Tyrannosaurus, not a therizinosaur (3).

In 1987, the Canadian paleontologist Philip Currie, who is widely acknowledged as the world’s expert on meat-eating dinosaurs, took a second look at the frontal bone which Sues had examined in the late 1970s, and concluded that Hans Sues had made a mistake. It wasn’t a raptor, but was instead a “segnosaur”, which was the way therizinosaurs were called back then. Currie stated that the bone looked similar to the frontal bone of an Asian therizinosaur called Erlikosaurus, and so he reclassified the bone as “cf. Erlikosaurus” (4).

In 1992, Philip Currie did a more thorough examination of possible therizinosaur finds in Canada. He again wrote about the frontal bone which was initially described in 1978, but he also added two more specimens to the discussion table, both of which were housed in the collection of the Royal Tyrell Museum of Paleontology (RTMP). These specimens were given the identification codes “RTMP 81.16.231” (again, Currie classified this specimen as “cf. Erlikosaurus”) and “RTMP 79.15.1” (a “pedal ungual”, or foot claw, which was classified as “cf. therizinosaurid”) (5).

“RTMP 79.15.1”: A foot claw which may belong to a therizinosaur. © Tracy Ford. Image from Paleofile.com. Used with permission. http://www.paleofile.com/Dinosaurs/Theropods/Segnosaurincertae.asp

 

In 2001, Michael Ryan and Anthony Russell conducted their own analysis of North American therizinosaur finds. They confirmed Currie’s claim that the frontal bone found in 1978 did indeed come from a therizinosaur. They also wrote about a neck vertebra found in the Scollard Formation (specimen identification code is “RTMP 86.207.17”), which dates to the very end of the Cretaceous Period, and which they classified as “Therizinosauridae indet.” (6).

Body fossils of therizinosaurs may be rare in North America, but footprints which may belong to therizinosaurs are more abundant. The first footprints were discovered in the 1990s in the Harebell Formation of northwestern Wyoming. According to an article published in 1996, these footprints were unique because they looked like theropod prints except that they had four toes instead of three – unique among theropods, therizinosaurs have four main toes. The authors postulated that the footprints belonged to an animal whose physical remains had not yet been discovered (7).

In 2011, a single therizinosaur footprint was discovered in Denali National Park, Alaska. The rock that the footprint was found in was part of the Cantwell Formation, which spans 80-65 MYA, and the footprint was placed in a layer dated to about 71-69 MYA. Depending upon which source that you read concerning geological dating, this date of 71-69 MYA either marks the boundary between the where the Campanian Stage ends and the Maastrichtian Stage begins, or else it is the earliest phase of the Maastrichtian Stage. In 2012, Anthony R. Fiorillo of the Perot Museum of Nature and Science (located in Dallas, Texas) published an article concerning this peculiar footprint (8). You can see a photo of it here.

In 2013 and 2014, Anthony R. Fiorillo and a team of other researchers returned to the site in Denali National Park and found a total of thirty-one therizinosaur footprints, along with numerous hadrosaur footprints as well. Like the first footprint that had been found in 2011, all of the other footprints were in rock dated to 71-69 MYA. The fact that footprint trackways of both hadrosaurs and therizinosaurs were found together might indicate that these animals traveled together, possibly for mutual protection. An article was published in August 2018 detailing these discoveries (9).

 

Species Identification

As we have seen in the previous section, there is some evidence in the way of footprints and a handful of isolated bones which suggests that therizinosaurs inhabited North America during the late Campanian or early Maastrichtian Stages of the Cretaceous Period. However, is there any way that we can identify which particular genus or species that these fossils belong to?

The subject of identification has been especially contentious concerning the footprints that were found in Wyoming and Alaska. So far, footprints form the majority of finds that are attributed to late Cretaceous therizinosaurs within North America. The problem is that it is difficult to identify a particular genus or species based solely on footprints, unless the shape of the footprint is extremely distinctive. Another problem is that while footprints are abundant, very few body fossils have been found, and none of them are highly diagnostic. Most researchers who examined them determined vaguely that the creature was a therizinosaur, but they couldn’t be more specific than that, with the exception of Philip Currie who proposed that they might belong to Erlikosaurus or a creature very similar to it.

Because it is so difficult to match a footprint with a particular animal, paleontologists often ascribe footprints their own genus and species names. This is what is referred to as an “ichnogenus”, which is a genus of animal known only from trace fossils, such as footprints, rather than actual physical body fossils.

In the 1996 article which discussed the unusual footprints found in Wyoming, the footprints were ascribed to the ichnogenus Exallopus (pronounced as Ex-ALLO-pus, meaning “from different foot” due to its unusual shape) and its species name was given as Exallopus lovei. The type specimen is identified as “DMNH 5989”, and it was identified as a coelurosaur. According to the website Fossilworks, “Its type locality is Whetstone Creek tracksite, which is in a Maastrichtian terrestrial sandstone in the Harebell Formation of Wyoming” (10). The following year in 1997, the genus name was changed from Exallopus to Saurexallopus (SORE-ex-ALLO-pus), because the name Exallopus was already taken by a species of marine worm (11). Another species, Saurexallopus zerbsti, was named in a 2003 article. The type specimen is identified as “CUMWC 224.2”. According to Fossilworks, “Its type locality is Zerbst Ranch Tracksite, which is in a Lancian fluvial sandstone/sandstone in the Lance Formation of Wyoming” (12). In 2014, a third species was named called Saurexallopus cordata based upon a single footprint fount in British Columbia, Canada, and dated to the Wapiti Formation of the late Cretaceous Period (13).

While all of the scientific articles concerning Saurexallopus identify it as a theropod, there has been some dispute as to what particular type of theropod it is. The original article which was written in 1996 identified it as a coelurosaur. In 2012, Anthony Fiorillo and Thomas Adams identified Saurexallopus as a therizinosaur (14). In an article written in 2015, Saurexallopus was identified as an oviraptorid (15). In an article written in 2018, Saurexallopus was simply identified as a theropod without any specific affinity (16). The website Fossilworks identifies Saurexallopus as a therizinosaur (17).

 

Reconstructing Saurexallopus

During the late 1980s and early 1990s, Philip Currie made comparisons between the various finds in North America with the Asian species Erlikosaurus. According to a phylogenic analysis of therizinosaur genera which was conducted in 2019, Erlikosaurus was closely related to Nothronychus, a therizinosaur which lived in North America during the middle Cretaceous Period. Since Saurexallopus is believed to be physically similar to Erlikosaurus, it is likely that it was genetically related as well, and as such would have been genetically related to Nothronychus. It is therefore quite possible that Erlikosaurus, Nothronychus, and Saurexallopus would have been similar in appearance (18).

Erlikosaurus skull and foot.jpg

Upper jaw and right foot of the Asian therizinosaur Erlikosaurus. Saurexallopus was probably similar in appearance to this genus. Illustration from Rinchen Barsbold and Altangerel Perle (1980) “Segnosauria, a new infraorder of carnivorous dinosaurs”. Acta Palaeontologica Polonica, 25 (2): pages 187-195. https://www.app.pan.pl/article/item/app25-187.html. Creative Commons Attribution License.

 

We can guess that Saurexallopus reached a similar length to Erlikosaurus, measuring about fifteen to twenty feet long (Holtz claims that Erlikosaurus was smaller than other authors do, although his estimate of Nothronychus is in fitting with the size bracket mentioned above) (19). Unlike the eponymous Therizinosaurus, which possessed long scythe-like finger claws (hence its name, which translates to “scythe lizard”), Nothronychus possessed shorter hook-shaped claws, which looked very similar to the stereotypical talons that are seen on carnivorous dinosaurs like Allosaurus and Torvosaurus. These claws were only one-third the size of the claws of Therizinosaurus, but they were well-suited for pulling down branches, for digging (if they could pronate their hands, but that’s a whole other argument), and for smacking the daylights out of any would-be predator. Thomas R. Holtz Jr. has compared therizinosaurs to the large ground sloths of the Cenozoic Era, and the analogy has some merit (20). Saurexallopus and other therizinosaurs likely lived a similar lifestyle and occupied a similar ecological niche, with the possible exception of Falcarius, which may have had a more cursorial lifestyle similar to early coelurosaurs like Ornitholestes.

Based upon their place within the dinosaur family tree, as well as from fossil finds, we are fairly certain that therizinosaurs were feathered. Therefore, it is almost certain that Saurexallopus would have had some form of feather covering as well, although whether it was over the entire body or only partially cannot be determined.

Below is a drawing that I made of Saurexallopus, based upon Erlikosaurus and Nothronychus. The erect mane running down the middle of its neck, back, and tail are just artistic conjecture.

Saurexallopus. © Jason R. Abdale. May 7, 2020.

 

Conclusions

So where does all of this information lead us? So far, there is some evidence which suggests that therizinosaurs were living in Alberta, Canada and Alaska, USA during the late Campanian Stage or early Maastrichtian Stage of the late Cretaceous Period up until about 70 MYA or thereabouts. As such, they would have lived side-by-side with creatures such as Albertosaurus, Edmontosaurus, and Hypacrosaurus. There is only one piece of evidence, a single neck vertebra, which suggests that therizinosaurs existed in North America during the Maastrichtian Stage of the Late Cretaceous. However, no specimens that can be definitely and unquestionably identified as belonging to a therizinosaur have been found in the Hell Creek Formation. Therefore, as far as our current evidence goes, it is unlikely that therizinosaurs lived side-by-side with Triceratops and Tyrannosaurus. However, this may change in the future if more body fossils are discovered.

 

Sources

  1. Utah’s Dino Graveyard; When Dinosaurs Roamed America.
  2. Lindsay Elizabeth Zanno. A Taxonomic and Phylogenetic Reevaluation of Therizinosauria (Dinosauria: Theropoda): Implications for the Evolution of Maniraptora. PhD dissertation, submitted to the University of Utah. December 2008. Page 172.
  3. Lindsay Elizabeth Zanno. A Taxonomic and Phylogenetic Reevaluation of Therizinosauria (Dinosauria: Theropoda): Implications for the Evolution of Maniraptora. PhD dissertation, submitted to the University of Utah. December 2008. Page 172; Dinosaur Mailing List. “Re: Yet even more questions (and I’m sure there’ll be more…)”, by Mickey Mortimer (June 22, 2002). http://dml.cmnh.org/2002Jun/msg00369.html; Theropod Database. “Therizinosauroidea”. http://theropoddatabase.com/Therizinosauroidea.htm.
  4. Lindsay Elizabeth Zanno. A Taxonomic and Phylogenetic Reevaluation of Therizinosauria (Dinosauria: Theropoda): Implications for the Evolution of Maniraptora. PhD dissertation, submitted to the University of Utah. December 2008. Page 172.
  5. Lindsay Elizabeth Zanno. A Taxonomic and Phylogenetic Reevaluation of Therizinosauria (Dinosauria: Theropoda): Implications for the Evolution of Maniraptora. PhD dissertation, submitted to the University of Utah. December 2008. Page 172; Dinosaur Mailing List. “Re: Yet even more questions (and I’m sure there’ll be more…)”, by Mickey Mortimer (June 22, 2002). http://dml.cmnh.org/2002Jun/msg00369.html.
  6. Lindsay Elizabeth Zanno. A Taxonomic and Phylogenetic Reevaluation of Therizinosauria (Dinosauria: Theropoda): Implications for the Evolution of Maniraptora. PhD dissertation, submitted to the University of Utah. December 2008. Page 172.
  7. J. D. Harris, K. R. Johnson, J. Hicks and L. Tauxe (1996). “Four-toed theropod footprints and a paleomagnetic age from the Whetstone Falls Member of the Harebell Formation (Upper Cretaceous: Maastrichtian), northwestern Wyoming”. Cretaceous Research, 17: 381-401.
  8. Anthony R. Fiorello and Thomas L. Adams (2012). “A therizinosaur track from the Lower Cantwell Formation (Upper Cretaceous) of Denali National Park, Alaska”. Palaios, 27: 395-400.
  9. Anthony R. Fiorello and Thomas L. Adams (2012). “A therizinosaur track from the Lower Cantwell Formation (Upper Cretaceous) of Denali National Park, Alaska”. Palaios, 27: 395-400; “The Lower Cantwell Formation and Its Fossils”; “Therizinosaur: prehistoric predator set standard for ‘weird’ in Alaska”; “First North American co-occurrence of Hadrosaur and Therizinosaur tracks found in Alaska”.
  10. Fossilworks. “Saurexallopus lovei”. http://fossilworks.org/bridge.pl?a=taxonInfo&taxon_no=65844.
  11. J. D. Harris, K. R. Johnson, J. Hicks and L. Tauxe (1996). “Four-toed theropod footprints and a paleomagnetic age from the Whetstone Falls Member of the Harebell Formation (Upper Cretaceous: Maastrichtian), northwestern Wyoming”. Cretaceous Research, 17: 381-401; J. D. Harris (1997). “Four-toed theropod footprints and a paleomagnetic age from the Whetstone Falls Member of the Harebell Formation (Upper Cretaceous: Maastrichtian), northwestern Wyoming: a correction”. Cretaceous Research, 18: 139.
  12. Martin G. Lockley, G. Nadon, and Philip J. Currie. (2003). “A diverse dinosaur-bird footprint assemblage from the Lance Formation, Upper Cretaceous, eastern Wyoming; implications for ichnotaxonomy”. Ichnos, 11: 229-249; Fossilworks. “Saurexallopus zerbsti”. http://fossilworks.org/bridge.pl?a=taxonInfo&taxon_no=81011.
  13. R. T. McCrea, L. G. Buckley, A. G. Plint, Philip J. Currie, J. W. Haggart, C. W. Helm, and S. G. Pemberton (2014). “A review of vertebrate track-bearing formations from the Mesozoic and earliest Cenozoic of western Canada with a description of a new theropod ichnospecies and reassignment of an avian ichnogenus”. In Lockley Martin G.; Lucas, Spencer G., eds. New Mexico Museum of Natural History & Science. Bulletin 62: Fossil Footprints of Western North America. Albuquerque: New Mexico Museum of Natural History & Science, 2014. Page 87.
  14. Anthony R. Fiorello and Thomas L. Adams (2012). “A therizinosaur track from the Lower Cantwell Formation (Upper Cretaceous) of Denali National Park, Alaska”. Palaios, 27: 395-400.
  15. R. T. McCrea, D. H. Tanke, L. G. Buckley, M. G. Lockley, J. O. Farlow, L. Xing, N. A. Matthews, C. W. Helm, S. G. Pemberton and B. H. Breithaupt (2015). “Vertebrate ichnopathology: pathologies inferred from dinosaur tracks and trackways from the Mesozoic”. Ichnos, 22 (3–4): 235-260.
  16. Martin Lockley, Gerard Gierlinski, Lidia Adach, Bruce Schumacher, and Ken Cart (2018). “Newly Discovered Tetrapod Ichnotaxa from the Upper Cretaceous Blackhawk Formation, Utah”. In Spencer G. Lucas and Robert M. Sullivan, eds. New Mexico Museum of Natural History and Science. Fossil Record 6, Volume 2: Bulletin 79. Albuquerque: New Mexico Museum of Natural History and Science, 2018. Pages 469-480.
  17. Fossilworks. “Saurexallopus”. http://fossilworks.org/bridge.pl?a=taxonInfo&taxon_no=65843.
  18. Scott Hartman, Mickey Mortimer, William R. Wahl, Dean R. Lomax, Jessica Lippincott, and David M. Lovelace (2019). “A new paravian dinosaur from the Late Jurassic of North America supports a late acquisition of avian flight”. PeerJ, 7: e7247. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6626525/.
  19. David Lambert, The Dinosaur Data Book (New York: Avon Books, 1990), page 61; Don Lessem and Donald F. Glut, The Dinosaur Society Dinosaur Encyclopedia (New York: Random House, 1993), page 184; Peter Dodson, The Age of Dinosaurs (Lincolnwood: Publications International Ltd., 1993), page 142; Thomas R. Holtz Jr, Dinosaurs: The Most Complete, Up-To-Date Encyclopedia for Dinosaur Lovers of All Ages (New York: Random House, 2007), page 382.
  20. Thomas R. Holtz Jr, Dinosaurs: The Most Complete, Up-To-Date Encyclopedia for Dinosaur Lovers of All Ages (New York: Random House, 2007), page 147.

 

Bibliography

Books:

  • Dodson, Peter. The Age of Dinosaurs. Lincolnwood: Publications International Ltd., 1993.
  • Holtz Jr., Thomas R. Dinosaurs: The Most Complete, Up-To-Date Encyclopedia for Dinosaur Lovers of All Ages. New York: Random House, 2007.
  • Lambert, David. The Dinosaur Data Book. New York: Avon Books, 1990.
  • Lessem, Don; Glut, Donald F. The Dinosaur Society Dinosaur Encyclopedia. New York: Random House, 1993.

Articles:

  • Fiorello Anthony R.; Adams Thomas L. (2012). “A therizinosaur track from the Lower Cantwell Formation (Upper Cretaceous) of Denali National Park, Alaska”. Palaios, 27: 395-400.
  • Fiorillo, Anthony R.; McCarthy, Paul J.; Kobayashi, Yoshitsugu; Tomsich, Carla S.; Tykoski, Ronald S.; Lee, Yuong-Nam; Tanaka, Tomonori; Noto Christopher R. (August 3, 2018). “An unusual association of hadrosaur and therizinosaur tracks within Late Cretaceous rocks of Denali National Park, Alaska”. Scientific Reports, 2018; 8 (1) DOI: 10.1038/s41598-018-30110-8. https://www.nature.com/articles/s41598-018-30110-8.
  • Harris, J. D.; Johnson, K. R.; Hicks, J.; Tauxe; L. (1996). “Four-toed theropod footprints and a paleomagnetic age from the Whetstone Falls Member of the Harebell Formation (Upper Cretaceous: Maastrichtian), northwestern Wyoming”. Cretaceous Research, 17: 381-401.
  • Harris, J. D. (1997). “Four-toed theropod footprints and a paleomagnetic age from the Whetstone Falls Member of the Harebell Formation (Upper Cretaceous: Maastrichtian), northwestern Wyoming: a correction”. Cretaceous Research, 18: 139.
  • Hartman, Scott; Mortimer, Mickey; Wahl, William R.; Lomax, Dean R.; Lippincott, Jessica; Lovelace, David M. (2019). “A new paravian dinosaur from the Late Jurassic of North America supports a late acquisition of avian flight”. PeerJ, 7: e7247. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6626525/.
  • Lockley, Martin G.; Nadon, G.; Currie, Philip J. (2003). “A diverse dinosaur-bird footprint assemblage from the Lance Formation, Upper Cretaceous, eastern Wyoming; implications for ichnotaxonomy”. Ichnos, 11: 229-249.
  • Lockley, Martin; Gierlinski, Gerard; Adach, Lidia; Schumacher, Bruce; Cart, Ken (2018). “Newly Discovered Tetrapod Ichnotaxa from the Upper Cretaceous Blackhawk Formation, Utah”. In Spencer G. Lucas and Robert M. Sullivan, eds. New Mexico Museum of Natural History and Science. Fossil Record 6, Volume 2: Bulletin 79. Albuquerque: New Mexico Museum of Natural History and Science, 2018. Pages 469-480.
  • McCrea, R. T.; Buckley, L. G.; Plint, A. G.; Currie, Philip J.; Haggart, J. W.; Helm, C. W.; Pemberton, S. G. (2014). “A review of vertebrate track-bearing formations from the Mesozoic and earliest Cenozoic of western Canada with a description of a new theropod ichnospecies and reassignment of an avian ichnogenus”. In Lockley Martin G.; Lucas, Spencer G., eds. New Mexico Museum of Natural History & Science. Bulletin 62: Fossil Footprints of Western North America. Albuquerque: New Mexico Museum of Natural History & Science, 2014. Pages 5-94.
  • McCrea, R. T.; Tanke, D. H.; Buckley, L. G.; Lockley, Martin G.; Farlow, James O.; Xing, L.; Matthews, N. A.; Helm, C. W.; Pemberton, S. G.; Breithaupt, B. H. (2015). “Vertebrate ichnopathology: pathologies inferred from dinosaur tracks and trackways from the Mesozoic”. Ichnos, 22 (3–4): 235-260.
  • Zanno, Lindsay Elizabeth. A Taxonomic and Phylogenetic Reevaluation of Therizinosauria (Dinosauria: Theropoda): Implications for the Evolution of Maniraptora. PhD dissertation, submitted to the University of Utah. December 2008.

Websites:

Videos:

  • Utah’s Dino Graveyard. The Discovery Channel, 2005.
  • When Dinosaurs Roamed America. The Discovery Channel, 2001.

 

Revising my Troodon drawing

Hello everyone. Time to kick off the new year with some much belated paleo-art. One of the projects on my to-do list was to re-do my old and very out-dated 2012 drawing of Troodon. Seven years ago, this drawing was my first attempt at making modern up-to-date paleo-art by featuring theropods with feathers, something that I’d never done before. However, I soon realized that my illustration was utterly pitiful, and I needed to make a new one that was not only more scientifically accurate but also more artistically pleasing. Below is my revised drawing that I made recently. I hope that you’ll agree it’s a distinct improvement. The old drawing has been deleted, partly because I was embarrassed by it, and partly because I don’t what people to get incorrect ideas about what Troodon would have looked like.

Dakotaraptor

Hi everybody. Here is my latest Hell Creek paleo-art. Say hello to Dakotaraptor steini, a large dromaeosaurid raptor that lived in South Dakota at the end of the Cretaceous Period. How large? We don’t have an exact measurement because this animal is known only from partial remains. However, enough was recovered to give a ballpark estimate that the creature measured somewhere around 15 to 20 feet long. Not as big as Utahraptor, but still pretty impressive.

Dakotaraptor steini. © Jason R. Abdale. May 26, 2018.

This drawing was made with No. 2 pencil, Crayola and Prismacolor colored pencils, a black felt-tipped marker, and A LOT of touch up work on the computer in order to make the scanned image as bold and vivid as it is in real life.

Lukousaurus: The first “raptor”?

In either the late 1930s or in the year 1940, the front half of a fossilized skull was discovered in Huangchiatien (also called Dahungtien), Yunnan Province, China. It was named and described as Lukousaurus yini by Chung Chien Young in the year 1940 (Young, Chung Chien. “Preliminary notes on the Lufeng vertebrate fossils”. Bulletin of the Geological Society of China, 20 (3-4) (1940). Pages 235-239), and it was described further in 1948 (Young, Chung Chien. “Further notes on Gyposaurus sinensis Young. Bulletin of the Geological Society of China, 28 (1-2) (1948). Pages 91-103). The holotype specimen is housed within the Institute of Vertebrate Paleontology and Paleoanthropology, which is located in Beijing, China, and it has been given the identification code of “IVPP AS V.23”.

Below is a drawing of the partial skull made by Tracy Ford.

Partial skull of Lukousaurus yini. Illustration by Tracy Ford. From The Dinosaur Society Dinosaur Encyclopedia, written by Don Lessem and Donald F. Glut. New York: Random House, Inc., 1993. Page 279. Image used with permission.

Lukousaurus lived during the early Jurassic Period, approximately 195 million years ago (MYA). Based upon the size of its remains, which consist only of the front half of its skull, it may have been six to eight feet long.

Some may cite Lukousaurus for its old age, but what grabbed my attention was when I read that the teeth had serrations only on the back edge. I had been told that this is a feature that is only found in the carnivorous dinosaurs commonly called “raptors”, more properly known as Deinonychosauria. This clade is divided into two families: Dromaeosauridae and Troodontidae. According to this source, all dromaeosaurids had teeth which were serrated only along the posterior (back) edge, and some troodontids had this feature as well. Although all raptor dinosaurs are found during the Cretaceous Period, paleontologists have hypothesized for years, based upon phylogenic analysis, that the ancestor of the raptors appeared millions of years earlier during the Jurassic Period. It may well be that Lukousaurus is that ancestor. Could it be that Lukousaurus is the oldest-known “raptor”?

Unfortunately, the information which I had read concerning raptor tooth serrations was later shown to be incorrect. I proposed this idea of Lukousaurus being a basal raptor on an online paleontology forum. In response, I was contacted by Jim Kirkland, a well-known paleontologist from Utah, who corrected me by saying that Deinonychosaurians actually DO have serrations on both the front and back edges of their teeth, but their anterior (front) serrations are much smaller than the posterior (back) serrations. In fact, in many specimens, the front serrations are so small that they are practically non-existent – you need a microscope to see them. This shows the danger of basing a hypothesis upon incorrect information, because this taints your reasoning and your conclusions.

I myself have not seen the actual specimen of Lukousaurus, nor do I know anyone who has. The claim is that Lukousaursus had absolutely no serrations on the front edge of their teeth. However, it was also claimed in another source that raptor dinosaurs didn’t have any serrations on the front edges of their teeth either – a statement that was proven false. Is it true that Lukousaurus had no anterior tooth serrations, or are the serrations so tiny that they cannot be seen with the naked eye?

If it is true that Lukousaurus had absolutely no serrations on the front edges of its teeth and only had serrations on the back edges of its teeth, then this invalidates the hypothesis that it might be a basal Deinonychosaurian, and it must belong to some other dinosaur group, if indeed it is a dinosaur at all; it has been proposed by at least one person that it might, in fact, be a crocodilian. However, what if Lukousaurus possessed teeth that are similar to raptors, with prominent serrations on the posterior edge, and miniscule serrations on the anterior edge, serrations that are so small that they were not noticed? If this is the case, then it is possible that Lukousaurus might, in fact, be a very primitive raptor dinosaur.

Evidence to back up this claim is very thin. But let’s assume for the time being that it is a dinosaur. Is there any evidence which suggests that Lukousaurus might be a member of Deinonychosauria, or perhaps a close relative?

The first piece of evidence to support the hypothesis that Lukousaurus is a very primitive raptor is its age. Paleontologists have speculated that raptors appeared during the Jurassic Period, specifically either the early or middle Jurassic. The reason why is because birds are believed to have been descended from raptors, and the oldest-known birds come from the late Jurassic – therefore, raptors must have appeared earlier. Lukousaurus comes from the early Jurassic.

The second bit of evidence is geographic location. Raptors are believed to have originated in Asia and then spread elsewhere. Lukousaurus comes from China, specifically the Lower Lufeng Formation in Yunnan Province, China. It would have shared the landscape with the prosauropods Gyposaurus, Lufengosaurus, and Yunnanosaurus. It would have also lived alongside the early carnosaur Sinosaurus and the ornithischian Tatisaurus (we’re not sure if it was an ornithopod or an early thyreophoran; it might have looked similar to Scutellosaurus).

The third piece of evidence, which I have already mentioned before, is tooth structure. Lukousaurus’ teeth are very thin and blade-like, and are sharply recurved backwards. What is especially noteworthy is that it is claimed that the teeth have serrations only on the posterior edge. This feature was stated to also be present in raptors, but as I said earlier, this was dis-proven.

This brings about the fourth piece of evidence, although this is subject to intense debate – taxonomy. It has been hypothesized that Lukousaurus was a coelurosaur, and the coelurosaurs were the ancestors of Maniraptora. This clade includes the ornithomimids, the therizinosaurs, the oviraptorosaurs, and the raptors. However, due to the incredibly fragmentary nature of Lukousaurus – it is, after all, known only from one fragmentary snout – its phylogenic position is uncertain. Yes, it has been classified as a coelurosaur, but it has also been classified as a ceratosaur, and even as a crocodilian. So, using taxonomy as evidence is incorrect; it’s more likely an opinion rather than evidence.

Lukousaurus might be an early raptor, but personally, I think it is an advanced coelurosaur which shows the beginning of raptor-like traits. This would make Lukousaurus a borderline coelurosaur-maniraptoran. Until more material from this particular species is uncovered, any assertions made as to which clade this creature belongs to will always be tinged with uncertainty.

Sources:

Caenagnathus, or Chirostenotes, or…um…something…

During the early 1920s, Charles W. Gilmore, a paleontologist from the Smithsonian Institute in Washington, DC, was prospecting for fossils in Alberta, Canada. While on this trip, he would discover several new species of dinosaurs, including a strange creature known only from a pair of incomplete hands. These hands had long slender fingers, which was highly unusual for theropods known at the time. He officially named and described them as Chirostenotes pergracilis in 1924.

The hands of Chirostenotes pergracilis. Illustration by Tracy Ford. From The Dinosaur Society Dinosaur Encyclopedia, written by Don Lessem and Donald F. Glut. New York: Random House, Inc., 1993. Page 109. Image used with permission.

Chirostenotes was originally believed to be a member of the family Elmisauridae. This is an enigmatic group of dinosaurs, whose members consist of only one genus, Elmisaurus. This animal lived in Mongolia during the late Cretaceous Period about 80 MYA, and the only evidence that we have of its existence is one incomplete foot and a hand found in 1970. Scientists recognized that the hands of Chirostenotes and Elmisaurus looked similar, and so Chirostenotes was placed into that family. By 1990, Elmisauridae was recognized as an invalid family name, and it was discarded.

Chirostenotes is now classified as a member of the family Caenagnathidae, named after the genus Caenagnathus, which might actually be the same animal as Chirostenotes (as early as 1990, scientists suspected that these two might actually be the same animal). The caenagnathids were a group of bird-like theropod dinosaurs who belonged to a much larger group called the oviraptorosaurs, who are well-known from Asia. Their presence in North America only adds further proof to a faunal exchange between Asia and North America. Caenagnathids are distinguished from oviraptorids by their feet, which look more like those of the ornithomimids, more commonly-known as “ostrich dinosaurs”. This suggests that the oviraptorosaurs evolved from the ornithomimids. According to current phylogenic analysis, the ornithomimids are more primitive than the oviraptorosaurs, so this hypothesis might be plausible.

The lower jaw of Caenagnathus collinsi, with a hypothetical upper jaw. Illustration by Tracy Ford. From The Dinosaur Society Dinosaur Encyclopedia, written by Don Lessem and Donald F. Glut. New York: Random House, Inc., 1993. Page 79. Image used with permission.

Because Caenagnathus and Chirostenotes are known from incomplete specimens, nobody can make up their minds as to whether or not they’re two separate genera or if they’re the same animal. Some paleontologists firmly believe the former, while others firmly believe the latter. Because of their incompleteness, we are also not 100% sure what the animal looked like. It’s reasonably certain that it bore a strong resemblance to Oviraptor, Citipati, or Anzu, but any recreation of what the entire animal looked like is guesswork. During the 1980s and 1990s, there were a wide range of images crafted by various paleo-artists which took a stab at what the whole animal would look like if it were fleshed out. Ever since the discovery of Anzu, which is both the largest and most well-known caenagnathid, the diversity of images has largely disappeared. Now, modern depictions of both Caenagnathus and Chirostenotes, if you can find them, are really nothing more than clone copies of Anzu, which I disagree with not only as a paleontology buff but also as an artist.

Below is my own rendition of what I think Caenagnathus, or possibly Chirostenotes, or both, would have looked like. Since no complete skull of either species has been found, the design for the head is based upon a hypothetical skull drawing made by Tracy Ford. My drawing was made on printer paper with No. 2 pencil, Crayola and Prismacolor colored pencils, and a black felt-tipped marker. Since my scanner has a tendency to wash out a lot of the detailing, I had to do a bit of touching-up on my computer to replicate how the image looks in real life. Hope you enjoy, and keep your pencils sharp.

Caenagnathus collinsi. © Jason R. Abdale. May 11, 2018.

UPDATE: In the year 2020, a research paper was published by Gregory F. Funston and Philip Currie which stated that new fossils of Chirostenotes had been discovered in Alberta, Canada. These fossils were distinct enough from those of Caenagnathus to support the idea that Caenagnathus and Chirostenotes ought to be considered as two separate genera.

For more information, please look at the following sources:

  • Funston, Gregory F.; Currie, Philip J. “New material of Chirostenotes pergracilis (Theropoda, Oviraptorosauria) from the Campanian Dinosaur Park Formation of Alberta, Canada”.  Historical Biology: An International Journal of Paleobiology (February 2020). DOI: 10.1080/08912963.2020.1726908. Published online.
  • Funston, Gregory (July 27, 2020). “Caenagnathids of the Dinosaur Park Formation (Campanian) of Alberta, Canada: anatomy, osteohistology, taxonomy, and evolution”. Vertebrate Anatomy Morphology Paleontology, volume 8 (1): Pages 105-153. https://journals.library.ualberta.ca/vamp/index.php/VAMP/article/view/29362.
  • Greg Funston Paleontology. “The Caenagnathids of Dinosaur Park” by Gregory F. Funston (July 27, 2020). https://gregfunston.com/2020/07/27/the-caenagnathids-of-dinosaur-park/

 

Ornithomimus, Before and After

Hello all. I’ve recently finished an important writing project that I’ve been laboring upon for months. Now that it’s finished, I have a little breathing room to do art, and this is what I’ve done so far. I decided to do an updated version of an old illustration that I had made of an Ornithomimus. While the general color scheme was what I had in mind, I was never truly happy with the end-product. This latest version is much more in line with what I was imagining the “Bird Mimic” would look like.

Here is the “before” picture, made in 2013.

 

And here is the “after”, made today.

 

You’ll notice several differences right away, the most noteable of them being the re-shaping of its wing feathers. While Ornithomimus, or perhaps ornithomimids in general, had pennaceous feathers, I don’t think that they had primaries, because those would have been attached onto the wrist and the hand. This would have been difficult for ornithomimids because, unlike “raptor” dinosaurs (dromaeosaurids and troodontids), ornithomimids could not flex their hands backwards. I also increased the size of its tail feathers, made the neck thicker, changed the shape of the skull so that it was more anatomically accurate, and added Secretary Bird-style feathers to the back of its head. So much for form. In terms of color, I made it more vibrant, with deeper richer yellows and oranges and a lot more black patches. I changed the color of its bare skin from pink to a mixture of tan and black. I made its beak black, I changed its eye from yellow to blood red, and gave it black feet.

I can definitely see this character rushing about on the plains of the Hell Creek Formation. This shows that artists should never be stagnant. They must always strive to improve their work, and in so doing, improve their skill.

This drawing was made on computer printer paper with a No. 2 pencil, Prismacolor colored pencils, markers, and a black felt-tiped pen. The size of the drawing, from the tip of its nose to the tip of its tail feathers, measures 10.75 inches long, which is almost 1/12 scale, as the real animal possibly measured 12 feet long with its neck and tail fully stretched out.

Keep your pencils sharp.

Head-Butting, Face-Biting, and Tail-Whacking: Dinosaur Intra-Species Combat

The image of Nature “red in tooth and claw” is a compelling vision which appeals to the popular imagination. Time and again, paleo-art illustrations depict dinosaurs and other prehistoric animals actively engaged in fighting, hunting, and killing. It’s a well-known fact that violence sells, and it’s also a well-known fact that the animal kingdom can sometimes be very brutal. But was the Mesozoic world really a landscape of perpetual violence and bloodshed with animals constantly engaged in the savage business of survival?

Most naturalists, biologists, and animal behaviorists today would say “probably not”. Animals do not engage in a perpetual brawl-fest with each other. Even so, animals do have violent interactions, not only among different species (inter-species combat), but also within the same species (intra-species combat). The dinosaurs were no exception to this, and we have many pieces of evidence that individuals within certain dinosaur species engaged in violent behavior towards each other.

Before I get into the particulars of the paleontological evidence, it’s important to establish some ground rules as to the sort of intra-species combat that animals engage in today, and what the dinosaurs likely engaged in during the past. Physical combat between individuals or at least physical harm inflicted by one individual upon another is typically rooted in either social or environmental causes. Animals hurt each other for a variety of reasons, but seldom is it done purely for the hell of it – only people do that. Social reasons for intra-species combat include violence associated with mating and with mate selection. Bighorn sheep rival males cranially collide with each other until one contestant or another gives up. Other individuals within numerous animal species fight each other in order to assert their right to mate. Mating-based violence can also include some very rough love – some males within certain shark species will actually bite the females in order to assert their power over the female. Speaking of this, asserting dominance is also one of the main causes for intra-species violence, regardless of whether or not mating is involved. This involves dominance within a hierarchy system, such as a lion pride or a wolf pack. Other reasons for intra-species combat are environmental, and are usually tied to the availability of food and other resources. Territorial defense in a strong motivator in this behavior, and this is strongly tied to yet another reason, which is competition of food.

Now that we have established some of the motivating factors behind why modern animals hurt each other, let’s examine the sort of intra-species combat that dinosaurs would have engaged in. For instance, many animals will kick either out of aggression, self-defense, or purely to express annoyance. One dinosaur that possibly engaged in combative kicking was the late Cretaceous ornithopod Parksosaurus. This small speedy herbivore possessed unusually long scythe-like claws on its feet. One may hypothesize that Parksosaurus engaged in kicking contests like in cockfights, or like the modern-day Australian cassowary bird. Then again, Parksosaurus could have also used these long claws for better traction when running, like the cleats on a runner’s shoes, or could have used them like digging tools to scratch into the dirt to search for food or water.

Of course, when people imagine kicking dinosaurs, the first thing that likely pops into their minds are the “raptor” dinosaurs, such as Deinonychus, Velociraptor, and Troodon. Did raptor dinosaurs, with their killing claws, do the same? The large hook-shaped toe claws were certainly used for a specific function, either ripping prey open or pinning it to the ground. I can easily imagine two bird-like raptors squabbling with each other and kicking out with their feet, like a pair of roosters, but this is purely speculative as there is no hard evidence for raptors engaging in kicking each other.

Acheroraptor. © Jason R. Abdale. July 16, 2014.

Years ago, it was proposed that another meat-eater, the late Jurassic carnivore Ceratosaurus, could momentarily balance itself on its thick tail like a kangaroo and kick out. However, this idea has since been disproven. In order for this kicking behavior to work, the tail has to be very thick and muscular and at the same time be very flexible. Ceratosaurus’ tail was deep, but thin in cross-section, more like a crocodile’s tail than a kangaroo’s. Furthermore, it only had limited up-down flexibility. For the most part, the tail was held stiff for balance, and its range of flexibility was largely confined to side-to-side motion, not up-and-down.

Ceratosaurus. © Jason R. Abdale. April 23, 2012.

Ceratosaurus is famous for having a prominent horn on the end of its nose, hence its name. However, the horn was very thin and blade-like in form, and was certainly used for display rather than offensive action. However, there were dinosaurs and other animals in the past that likely used their heads as weapons. “Head-butting”, when animals engage in combat by using their heads as hammers, possibly occurred in earlier animals, such as the dinocephalians of the Permian Period. They had thick flattened skulls, and either pressed and shoved against one another or might have collided cranium against cranium. The dinosaurs which are most associated with head-butting are the marginocephalians, “the wide skulls”, the group that includes pachycephalosaurs and ceratopsians. At first glance, their skulls seem to have been specially designed for head-on physical combat. The eponymous Pachycephalosaurus had a rounded skull that was a solid foot thick, and many scientists have automatically assumed that such skulls were used in head-butting contests, like with modern-day bighorn sheep. A recent study by the University of Wisconsin has found that 20% of pachycephalosaur skulls exhibit head trauma, suggesting with some certainty that the pachycephalosaurs did indeed engage in head-butting behavior.

Pachycephalosaurus. © Jason R. Abdale. October 19, 2013.

But what about the other members of the marginocephalians? The ceratopsians, “the horned faces”, which include the likes of Triceratops and Styracosaurus, have also been assumed to have been highly combative animals, with their spikes, horns, and frills. In recent years, the idea of these horned behemoths duking it out with each other or impaling predators on their sharpened horns has come under intense criticism. Many of their frills are dominated by wide holes which served to lighten the weight but also made them practically useless for protection. Some scientists think that the frills and horns were primarily there for display and species recognition, and their use in defense was only an afterthought.

Chasmosaurus. © Jason R. Abdale. March 31, 2016.

As you’ve probably seen by now, most of the animals which have physical features that can be used in combat are herbivores. Why? Because they sometimes have to physically fight in order to stay alive and avoid being eaten by carnivores. Aside from teeth and claws, the meat-eating theropod dinosaurs don’t seem to have much in the way of special features that would be involved in fighting, not just eating. Ceratosaurus’ nasal horn was too thin and flimsy for attacking something, and so too were the eyebrow horns of its larger contemporary Allosaurus. However, another carnivore did possess eyebrow horns which very well might have been used in fighting – Carnotaurus, one of my personal favorites. Ever since its discovery in the 1970s, paleontologists and paleo-artists have imagined this dinosaurian toro engaged in head-butting clashes with other members of its kind. However, based upon the build of the skull, it seems more likely that it was engaged in cranial “shoving matches”, in which both competitors would press their skulls against one another (hence the Velcro-like arrangement of bumps and nodules on the top of their heads in between the horns) and proceed to push and shove in a demonstration of pure muscular strength until one side or another decided that their opponent was too strong, and retreated.

While predators might not necessarily have physically struck each other with their skulls, they could have used their heads in another way that is far more common among carnivorous animals of all sorts today – face-biting. Face-biting is a way to assert dominance among individuals, especially in communal or pack-hunting societies. Several modern carnivorous animals, such as lions, foxes, and wolves, engage in this behavior. The infamous creature known as “Jane”, who might be either a Nanotyrannus or a juvenile Tyrannosaurus (to this day, nobody is exactly sure), has evidence of face-biting. Since many animals today who engage in face biting do so in order to assert their position of dominance in a pack society, this could be further evidence that this animal was itself a pack hunter, at least as a juvenile. At least one specimen of a juvenile Daspletosaurus also has evidence of face-biting. Sue the T. rex possesses marks on the jaw which were previously thought to have been the result of bites, but were later proven to have actually been caused by a bone infection.

Predators aren’t the only animals today that engage in face-biting, so there may have been herbivorous dinosaurs that engaged in the same behavior. The most likely candidate for this is the small African herbivore Heterodontosaurus. The tusks on this creature could have been wielded in actual biting, or they could have been used for fang-bearing contests like modern baboons. Many animals bear their fangs or canines when aggressive, and Heterodontosaurus possibly did this to intimidate rivals and scare off predators. Another animal that can be compared with Heterodontosaurus is the musk deer. However, their long saber-like canine teeth are grown for display, not combat. Musk deer grow huge teeth instead of growing antlers in order to over-awe rival males and to impress females.

Another possibility for serious dinosaur fights was among the sauropods. With their massive builds, any hit, no matter how light, likely would have caused some kind of damage. One modern long-necked animal that uses its body in sheer brute force is the giraffe – a rather placid-looking animal, but don’t make it angry. During the mating season, male giraffes will proceed to whack each other, swinging their long stiffened necks around like baseball bats, with the short stumpy horns on the tops of their heads inflicting some serious pounds-per-square-inch. Some sauropods, like Apatosaurus, had very massive thick necks in proportion with their body size. This leads some to speculate that Apatosaurus and its ilk used their bruiser builds to inflict bruises on others.

Apatosaurus louisae. © Jason R. Abdale. May 11, 2020.

But what about the opposite end of a sauropod? For many of them, the tail was just as long, or longer, than the neck. Tails can be effective weapons. Crocodilians and monitor lizards engage in tail whacking as a way to ward off threats. Many sauropods had thick tails, but others, like Diplodocus, have very long thin tails, and some believe that these long whip-like tails were indeed used like whips. A sharp crack across the side would make any Allosaurus wary.

Diplodocus carnegii. © Jason R. Abdale. May 11, 2020.

Of course, there are dinosaurs that almost certainly used their tails specifically for combat: the stegosaurs and the ankylosaurs. Evidence has been found for injuries inflicted by these animals upon predators, but I’m not certain if any evidence exists for stegosaur spikes or ankylosaur clubs being used upon members of their own kind. However, I can’t imagine it NOT happening.

Well, if you don’t have any biological weaponry on your side, like fangs, horns, spikes, clubs, or whatever, then raw physical force is your go-to option. There is evidence that predator species tangled with prey. The famous fossil find of a Velociraptor and a Protoceratops perpetually locked in a mutual mortal combat proves this. But this is likely an example of an attack-gone-wrong. Did dinosaurs of the same species physically grab onto and grapple with each other? Did dinosaurs wrestle, the way that some lizard species do today? Monitor lizards are a prime example of this, when two males will attack each other by essentially doing reptilian ju jitsu. Did dinosaurs wrestle? I’m not sure, but I’m leaning towards no, especially for the larger ones. Many small dinosaurs had thin delicate bones that could be easily broken, and many of the larger dinosaurs simply did not have the arm dexterity to do rough-and-tumble wrestling maneuvers the way that you see monitor lizards doing today. Furthermore, with their large size, being body-slammed to the ground would have done a lot of damage. As they say, the bigger they are, the harder they fall. Many dinosaurs show signs of physical trauma, including broken bones. Many led a very brutal life, with some skeletons being covered with injuries. For those reasons, I would say that most dinosaurs wanted to avoid intense physical combat.

Sometimes, the violence goes to its absolute extreme, and animals deliberately kill each other. Like intra-species fighting, intra-species killing has several motivating factors, both environmental and social. Animals kill each other to either reduce or totally eliminate competition over limited resources. Animals will also kill rivals to increase their own chances for mating, as well as killing the offspring of rivals to increase their own offspring’s chances for survival. As an example, new male lions that take over an existing pride will often kill all of the pride’s cubs in order to completely eliminate the legacy of the preceding male leader.

The most extreme form of intra-species combat is killing followed by cannibalism. Although it is largely taken for granted that prehistoric carnivorous animals ate their own kind under certain circumstances, there is little evidence to support this hypothesis. Some animals will kill and eat the young of other individuals in order to improve the chances of survival for their own young. Others may kill and eat their own kind out of starvation. Still others, like alligators, may view other members of their own kind as a legitimate food source, no different than any other prey item, and actively hunt, kill, and eat each other.

For a long time, it was believed with the firmest dogmatic conviction that the late Triassic dinosaur Coelophysis practiced cannibalism. However, this long-held belief has come into question upon closer examination of the famous Ghost Ranch specimens. It now appears that many of the bones which were previously believed to be inside the ribcages of others were actually lying underneath the ribcages. Furthermore, some of the bones previously identified as juvenile specimens have recently been re-identified as belonging to other reptile species. For the record, I am not stating that Coelophysis never engaged in cannibalism. I am stating that the evidence for cannibalism in this species is not as clear-cut as once believed and needs to be taken with a certain degree of doubt. If the study of paleontology has taught me anything, it’s that there is no such thing as dogma.

Coelophysis. © Jason R. Abdale. April 26, 2015.

Although there’s questionable evidence for cannibalism in Coelophysis, there is more compelling evidence in another dinosaur from the opposite end of the Mesozoic spectrum – Majungasaurus, an abelisaurid from Madagascar who lived at the very end of the Cretaceous Period. In 2007, scientists published findings that tooth marks discovered on some Majungasaurus bones matched the teeth in Majungasaurus’ jaws. So far, this is the only conclusive proof that a theropod species killed and/or ate the flesh of its own kind. I would like to say one thing, though: just because there’s evidence that an animal was cannibalized, that doesn’t necessarily mean that this individual was killed by the animal feeding off of it. As said before, scavengers will sometimes eat the dead bodies of their own kind. To them, meat is meat, no matter where it comes from. Others will not usually eat their own kind, but will do it if they’re desperate enough and cannot find other sources of food. As an example, most humans who have engaged in cannibalism do it out of necessity, not out of habit.

In conclusion, animals will hurt each other and kill each other for a variety of reasons, not only between species but also within species. Competition for mates, competition for food and territory, and establishing your position within the social hierarchy are all seen within the modern animal kingdom, and it’s highly likely that dinosaurs did the same.

Ornitholestes with feathers

Greetings all. Every child with a rough grasp of what life was like in Late Jurassic North America probably knows the Morrison Formation’s main characters. If such a child were to be asked to name the meat-eaters from that formation, the name Ornitholestes would definitely pop up, likely somewhere around third or fourth place.

Ornitholestes was a 6-foot long coelurosaurid theropod dinosaur that lived in western North America during the late Jurassic Period, 155-145 MYA. It is commonly depicted scampering about in the forest, or along the edge of the forest, or sneakily hiding in the shadows out of sight of the larger predators. With the likes of Allosaurus and Torvosaurus stomping around, it’s easy to see why paleo-artists have relegated little Ornitholestes to a bit-part on the Jurassic stage.

But I like to think that Ornitholestes‘ part was much bigger in the never-ending drama of Mesozoic life. Let’s look at its body. I’ve already stated that it was 6 feet long and was therefore about 2 feet tall – large enough to bite you on the knee. It likely weighed a hundred pounds or a smidge less than that – certainly not more. Its skull is worth looking at. Contrary to what has been commonly portrayed, it DID NOT have a little Ceratosaurus-like crest on the end of its nose. That mistake was made when a dislocated bone was mis-identified as a nasal crest. The skull was thin and deep, like a battle axe, and based upon its structure and that of its neck, it likely had a very strong bite. The teeth are small, but they are rather thick in cross-section. A powerful bite and thick teeth? This makes Ornitholestes sound like a precursor to the tyrannosaurs, and no wonder, because the tyrannosaurs are, in fact, highly-evolved coelurosaurs – the same group that Ornitholestes belonged to. The eye sockets on this baby were huge, so it is likely that Ornitholestes was a nocturnal hunter. As for its body, it was a bit on the muscular stocky side, so it was physically strong. It was equipped with long arms ending in three hook-like claws on each hand, and it had a long tail. We can also be fairly sure that Ornitholestes had a coat of thin whispy fur-like feathers on its body since other coelurosaurids that were more primitive and more advanced that Ornitholestes had feathers.

So what can we determine? It was strong for its size, its jaws could crack through eggshells and small bones, it could run, and it could grapple. In short, Ornitholestes was the hyena of the Jurassic savannah.

Hyenas are nothing to laugh at (I’m sorry, that was bad). Hyenas have a reputation for being scavengers, likely because they are commonly seen picking at the leftovers of the lions’ dinner, and because their jaws are the strongest jaws pound-for-pound of any meat-eating animal on the African plains – good for cracking through thick bones of carcasses. But in reality, hyenas are effective hunters as well. They are pack hunters, like lions or wolves, and it’s not unusual to see a gaggle of them, panting and bare-teethed, running down a zebra or a wildebeest.

Was Ornitholestes the same way? Unfortunately, fossils rarely provide evidence for animal behavior. The fact that Ornitholestes fossils are so rare doesn’t help matters. But I dare say that these carnivorous critters were a serious threat to dinosaur mothers who had eggs to protect, they likely did significant damage to hatchlings, they preyed upon smaller animals like thick-boned mammals, and assuredly were seen scavenging carcasses left by other larger meat-eating dinosaurs.

A while back, I drew a picture of Ornitholestes and posted it to this blog. However, it was an “old school” picture portraying Ornitholestes covered in scales. I have recently made an updated version, and I’m posting that image below.

ornitholestes-with-feathers

In addition to the feathers, I’ve also slightly altered the shape of the skull to be a little more accurate. I always try to improve my work, and I dare say that a few years from now after my skills have improved further, I’ll make a drawing of this guy that’s even better than the one you see here.

Keep your pencils sharp, people.

Anzu

Anzu

Anzu was a caenagnathid from the Hell Creek Formation. I wrote of its discovery and naming in an earlier post that you can read here. The caenagnathids were a primitive group of oviraptorosaurs, the “egg thief” dinosaurs. Anzu is so far the largest species from this group found in North America, measuring 10-13 feet long from nose-tip to tail-tip, and it was also one of the last of its kind.

In terms of this picture, the chicken-like wattles are purely conjecture on my part, as are the types of feathers and color patterns.

News: “Egg thief” dinosaur from Hell Creek FINALLY named!

All I can say is “It’s about time!!!”

After sitting around for years without an official description, a bird-like dinosaur found in the Hell Creek Formation has finally been given a name. I’m very happy about that. What I’m not happy about is the name that was actually chosen – Anzu wyliei, a name that I REALLY don’t find appealing.

Last year, I read that a bird-like dinosaur more commonly found in the Gobi Desert was discovered in North America. Furthurmore, I found out that it was actually on display in Pittsburgh, and had been for several years – it shows just how horribly behind the times I am. However, I was aghast when I learned that this creature didn’t even have a name. I asked “What the hell’s been taking them (meaning the scientists) so long?” Well now the wait is over.

Anzu (I’m actually shuddering as I’m writing the name – I just loathe the way that it sounds) was a member of a family of dinosaurs called Caenagnathidae. The caenagnathids were a sub-group within a super-family of theropods known as the oviraptorosaurs, or “egg thief lizards”. These very bird-like dinosaurs are well-known from Asia, especially China and Mongolia, but they are almost unheard of anywhere else. Oviraptorosaurs ranged in size from five to twenty-five feet long, and might have evolved from the ornithomimids, the “bird mimics”, commonly known as “ostrich mimics” due to their ostrich-like appearance. The most famous of them was Oviraptor, “egg thief” found in Mongolia by the adventurous Roy Chapman Andrews. The name came from the discovery of a partial skeleton lying on top of a nest of eggs. Chapman and his colleagues thought that the animal was in the process of plundering the nest when it was killed. It wasn’t until later when the insides of the eggs were carefully examined that paleontologists discovered that the preserved embryos were that of other oviraptorosaurs. This animal wasn’t preying upon the eggs – it was the mother.

The caenagnathids have had a confusing history, dating back to the early 20th Century. In the early 1920s, the famous paleontologist Charles W. Gilmore was fossil hunting in Alberta, Canada, when he found the remains of a new and strange creature known only from a pair of incomplete hands. In 1924, he gave them the name Chirostenotes pergracilis. Another dinosaur was named based upon an incomplete foot, and it was called Macrophalangia. By the late 1970s, scientists realized that these two animals were the same, and Chirostenotes became the official name.

But what sort of creature was Chirostenotes? It was clearly a theropod – a bipedal meat-eater – but the bone structure was unlike any other theropod known. In fact, it looked very bird-like. It was believed that Chirostenotes was most similar to another mysterious dinosaur called Elmisaurus, which came from Mongolia during the late Cretaceous Period.

For a long time, Chirostenotes was the only North American oviraptorosaur, specifically a caenagnathid. It was found in rocks dated to the Campanian Stage (80-70 MYA) of the Cretaceous Period. Then, in the 1960s, another oviraptorosaur – and a very early primitive one at that – was found, named Microvenator, “the little hunter”. It lived in Montana approximately 100 million years ago alongside Deinonychus and Tenontosaurus. This showed that oviraptorosaurs were present in North America for much longer than previously suspected.

It had been believed for a while that Chirostenotes and its kind had become extinct a millions of years before the dinosaurs’ exinction. However, in the 1990s, fossils of an animal which might have been an oviraptorosaur were found in Montana in rocks that dated to the very end of the Cretaceous Period – the famous Hell Creek Formation, the home of Tyrannosaurus rex. No oviraptorosaur fossils had ever been found there before. In 1994, Canadian paleontologist Phil Currie, an expert on theropod dinosaurs, published a paper on a fragment of a lower jaw found at the “Sue” site. Based upon it’s shape, it was obviously an oviraptorosaur, specifically a member of the family Caenagnathidae. However, this specimen was significantly larger than any previously-known specimens. It could have been a larger specimen of Chirostenotes, or it might have been a new species.

The problem was that Chirostenotes was known only from a few fragmentary finds – a complete or nearly-complete skeleton had never been found. Then, a pair of incomplete skeletons were found in Hell Creek, and were described in 1995. Ever since then, they have been housed in the Carnegie Museum of Natural History in Pittsburgh, Pennsylvania. The staff at the Carnegie Museum even took these two skeletons, composited them together, and put the creature on display for the public! However, the creature still did not have a definitive identification. Paleontologists were uncertain as to whether “the Triebold specimens”, as they were called, were Chirostenotes or maybe another larger species.

In 2011, Matt Lamanna and other scientists announced that they were studying the Hell Creek oviraptorosaur in more detail. Based upon a preliminary view, they stated that it was very similar to Chirostenotes, but they shied away from going so far as to claim that it was a distinct species.

In 2013, a team from the Burpee Museum (the same museum famous for “Jane”, which might be either a Nanotyrannus or a juvenile T. rex, depending on who you ask) discovered the partial skeleton of a caenagnathid oviraptorosaur near the small town of Ekalaka, Montana. The bones were so large that they originally thought that they had found a T. rex; Professor Thomas Holtz of Maryland rushed to the site and confirmed the animal’s identity. This specimen was even larger than the Triebold specimens in the Carnegie Museum. It was affectionately nicknamed “Pearl”.

In 2014, Matt Lamanna and three other colleagues published a paper on the Triebold specimens collected from North and South Dakota. After an exhaustive analysis of the bones, they concluded that the Triebold specimens were not Chirostenotes or Caenagnathus, but constituted an entirely separate genus. They called it Anzu wyliei. According to Lamanna’s own report, the dinosaur was named after Anzu, a feathered bird-like demon from Mesopotamian mythology, and measured somewhere between ten to fifteen feet long.

What the heck does a Mesopotamian demon, feathered or otherwise, have to do with a North American dinosaur? I can understand if the fossils were found in Iraq, but they weren’t. I would actually be highly surprised if ANY dinosaur fossils were uncovered in Iraq. It would be a lot more fitting if it was given a traditional Greco-Latin name, something like Dakotaraptor, or maybe even named after a being from native Sioux Indian folklore, like Wakinyanoraptor (“Wakinyan” is the Sioux name for the thunderbird sky spirit).

But then again, what the heck does the white-skinned feathered serpent god from central Mexico have to do with an unusually large pterosaur from Texas, which neither looked anything remotely like a serpent, nor had feathers, nor came from Mexico? I’m talking about Quetzalcoatlus, for those of you who haven’t caught on. So I suppose I shouldn’t be too harsh. Still, Anzu … it just sounds SOOOOO wrong. Unfortunately, we’re all stuck with it.

The specimen uncovered by the team from the Burpee Museum is also likely a specimen of Anzu.